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2. Radiation and Retarded Potentials 
 
2.2 Liénard-Wiechert Potentials and Point Charges  
 
Retarded Potentials and the Wave Equation 
We have arrived at a modified form of the vector and scalar potentials in terms of a charge density and 
current density source terms evaluated at a retarded time.  Before proceeding we are required to verify that 
these vector and scalar potentials discussed in 2.1, proposed on physical grounds, do indeed satisfy the 
inhomogeneous wave equations. 
 
Here we will verify that retarded potentials V and A: 
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Also,  (t R / c) satifies the 1-D wave equation:
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Thus, the proposed representation in terms of retarded potentials do indeed satisfy the wave equation (it is 
worth noting that a similar representation for retarded E and B fields in terms of t-R/c do not satisfy the 
wave equation). 
 
Finally, we note that the advanced potentials with t = t +R/c are entirely consistent with Maxwell’s 
equations but they violate causality –in nature effect does not precede cause!  For completeness we include 
the advanced potentials: 
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They do have some theoretical interest as they are a product of the time-reversal invariance of the wave 
equations. 
 
 
 
Exercise:   
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Liénard-Wiechert Potentials and Point Charges 
 
We will investigate the scalar and vector potential generated by a moving point charge q. 
 

3 '
0

3 '
0

1contribution  only at =t'=t r r '
c

1(r ', t ') q r ' r (t ') ,   t ' t r r '    Integration is difficult as it also depends on r
c

1(r ', t ') q d t r r ' (r ' r (
c

τ − −

⎡ ⎤ρ = δ − = − − →⎣ ⎦

⎛ ⎞ρ = τδ τ − + − δ −⎜ ⎟
⎝ ⎠

⌠
⎮
⎮⎮
⌡ G G

G G G G G G

G G G G G

��������	�������
  and r' are no 
longer connected

'
0 0

R( )

))

1t R( )
q cV(r, t) d

4 r r ( )

τ

τ

τ

⎡ ⎤δ τ − + τ⎢ ⎥⎣ ⎦⇒ = τ
πε − τ

⌠
⎮
⎮
⎮⎮
⌡

G�����	����


G
G G
����	���


 

 
 
Now we use the sifting property of delta functions: 
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Using the result from the exercise 
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where the quantities in parenthesis are evaluated at the retarded time: ret ret
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Also, for the vector potential: 
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and this gives the Liénard-Wiechert vector potential: 
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For slow moving charges these reduce to the results of electro and magneto-statics.  To prove this consider 
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Features of Liénard-Wiechert Potentials 
 
 

• The Lienard-Wiechert potentials and fields are relativistically correct (Lorentz covariance) 
 

• For point charges, the B-field is always perpendicular to the E-field and the unit vector R̂  from 
the retarded position to the observation point 
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• The energy radiated  by a moving charge per unit time per unit solid angle is: 
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Radiation by an Accelerated Charged Particle 
 

Particle Moving with a Constant Velocity ( = cβ) 
 

In this case only the velocity component of the Lienard-Wiechert field contributes: 
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Thus despite the retarded field analysis the field is directed from the actual position of the particle ( pR

G
) at 

time t rather than the retarded position! 
 
The objective is now to obtain the denominator in terms of Rp and in terms of the angle between the 
direction of travel and the field observation point. 
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i.e. this allows the field to be written in terms of  the present location of  the particle. 
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This allows the magnetic field to be obtained: 
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Again, the magnetic field does not depend on the position in retarded time but depends on the present 
position of the particle only! 
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Features of Particle Moving with Constant Velocity  
 

• For relativisitic velocities , i.e. β ~ 1: 

1. At θ = π/2 the E-field is enhanced by a factor of 
2
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2. At  θ = 0, π the E-field is suppressed by a factor of 2
2
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The consequence of this is the radiation in linear accelerator (applicable for example, to the 2-mile 

linac in California known as SLAC) is markedly transverse to the direction of motion.   For ultra-

relavisitic electron beams the radiation is suppressed rapidly by 1/γ2  in the direction of motion and is 

enhanced by γ transverse to the motion.  Thus, the radiation E-field is concentrated in a pancake-like 

distribution.  Indeed, as  the angle of the pancake  goes to π/2 and the E-field is then entirely 

transverse to the direction of motion. 
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